Connect with us

Concrete

Durable concrete for tunnelling application

Published

on

Shares

In this first part of the two-part series, EugenKleen of Mc-Bauchemie Mueller GmbH and Co.KG spells out the properties required in concrete and the types of concrete used in tunnelling application.Over the decade the use of concrete admixtures, especially plasticizers and superplasticizers, is showing upward trend in India. The advent of concrete pumps and transit mixers has also contributed to this, as the use of superplasticizers enables trouble-free pumping operations and minimizes pipe blockages. With the advent of major metro projects across India, durability of concrete used especially for tunnelling segments is of prime importance. The earlier attitude of taking recourse to the use of admixtures only after facing problems is changing fast, and now, in most tunnelling projects, high performing admixtures are already included in the specifications and the mix is designed to achieve the necessary properties.The concrete for tunnel segments necessitates the concrete to have the following properties:??Compressive strength??Workability??Surface finish??DurabilityAs part of the durability requirements, concrete is or should be generally tested for the following properties:??Chloride migration??Sulfate resistance??Water absorption??Acid resistance??Porosity??Freeze thaw resistanceThis can be achieved using the latest technologies available for concrete. Concrete is now no longer a material consisting of cement, aggregates, water and admixtures but it is an engineered material with several new constituents like PFA, GGBSF, Microsilica, Metakaolin, Colloidal Sillica and several other binders, fillers and pozzolanic materials. The concrete today can take care of any specific requirements under most exposure conditions.The mix designs are getting relatively complex on account of interaction of several materials and mix design calls for expertise in concrete technology and materials. High performance concretes will have to be adapted for tunnelling segments, considering special properties as well as low cost maintenance strategies.What type of concrete do we use?Concrete used in tunnelling applications need the following outstanding properties viz. Compressive strength, high workability, enhanced resistances to chemical or mechanical stresses, lower permeability, durability etc. this will necessitate the use of high performance concrete. Some HPC types which will hold the key for tunnelling applications can be classified into:??Self compacting concrete / high workability concrete??Concretes resistant against aggressive mediaSelf-Compacting Concrete (SCC)Self-Compacting or Consolidating Concrete (SCC), as the name signifies should be able to compact itself by its self-weight under gravity without any additional vibrations or compaction. Self compacting concrete should be able to assume any complicated formwork shapes without cavities and entrapment of air. The reinforcement should be effectively covered and the aggregated should be fully soaked in the concrete matrix. In addition, the concrete should be self-levelling type and self-defoaming without any external compaction.The formulation of self compacting concrete has the latest concrete technology and it requires in-depth knowledge of materials and meticulous testing procedures before the concrete is designated as SCC. Self compacting concrete has the following special advantages.??Saving of cost on machinery, energy and personnel for vibrating the concrete??Considerable improvements to exposed surfaces (Fair Faced Concrete), less efflorescence??Marked improvements in durability on account of better compaction??Extremely suitable for slim and complicated moulds??Covers reinforcement effectively??Better adhesive between cement binder and aggregates??Reduction in de-moulding time??Advantage with respect to sound pollutionTherefore while calculating the costing and economics of self compacting concrete all the above mentioned advantages should be converted to cost parameters. This kind of concrete can give advantage of good compressive strength, workability and finish to the tunnel segments and may prove suitable.Durable concrete resistant against aggressive mediaOne major application of HPC is to increase the durability of concrete where aggressive underground conditions are anticipated. This can be achieved physically by resorting to very dense aggregate packing.Practically possible by selecting a very smooth sieve line from largest aggregate to the smallest grain of mineral additives like microsilica or new generation aluminosilicate slurries. Chemically, cement by itself is not acid resistant. The acid resistant binder is formed by combination of cement, microsilica / aluminosilicate and flyash. To control permeability very low water cement ratio has to be adopted. So as to provide the essential concrete properties a high-performance PCE (polycarboxylate ether) needs to be incorporated in the mix. By adjusting the particle size distribution on the micro scale the permeability of the concrete is reduced which minimizes the penetration of aggressive substances. Depending on the degree of dispersion these material particles more or less completely fill the spaces between the cement particles. During hydration the pozzolanic silica reacts with the free calcium hydroxide to form calcium silicate hydrates. This gives a denser concrete structure.(Source: Paper presented by the author at the Construction Chemicals International Conference 2012 held in Mumbai)

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares
The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares
JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares

Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds